How to Compute Halting
نویسنده
چکیده
A consistently specified halting function may be computed.
منابع مشابه
Algorithmic Irreducibility in a Cellular Automata Universe
We discuss how to compute the halting probability Omega in the limit in a cellular automata world.
متن کاملSome improvements in fuzzy turing machines
In this paper, we improve some previous definitions of fuzzy-type Turing machines to obtain degrees of accepting and rejecting in a computational manner. We apply a BFS-based search method and some level’s upper bounds to propose a computational process in calculating degrees of accepting and rejecting. Next, we introduce the class of Extended Fuzzy Turing Machines equipped with indeterminacy s...
متن کاملNon-Classical Hypercomputation
Hypercomputation that seeks to solve the Halting Problem, or to compute Turing-uncomputable numbers, might be called “classical” hypercomputation, as it moves beyond the classical Turing computational paradigm. There are further computational paradigms that we might seek to move beyond, forming the basis for a wider “non-classical” hypercomputation. This paper surveys those paradigms, and poses...
متن کاملCan new physics challenge “old” computational barriers?
We discuss the impact of very recent developments of spacetime theory, black hole physics, and cosmology to well established foundational issues of computability theory and logic. Namely, we describe a physical device in relativistic spacetime which can compute a non-Turing computable task, e.g. which can decide the halting problem of Turing machines or whether ZF set theory is consistent or no...
متن کاملCdmtcs Research Report Series Recursively Enumerable Reals and Chaitin Numbers Recursively Enumerable Reals and Chaitin Numbers
A real is called recursively enumerable if it can be approximated by an increasing, recursive sequence of rationals. The halting probability of a universal selfdelimiting Turing machine (Chaitin's number, [10]) is a random r.e. real. Solovay's [25] -like reals are also random r.e. reals. Solovay showed that any Chaitin number is -like. In this paper we show that the converse implication is true...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1606.08699 شماره
صفحات -
تاریخ انتشار 2015