How to Compute Halting

نویسنده

  • Eric C. R. Hehner
چکیده

A consistently specified halting function may be computed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Irreducibility in a Cellular Automata Universe

We discuss how to compute the halting probability Omega in the limit in a cellular automata world.

متن کامل

Some improvements in fuzzy turing machines

In this paper, we improve some previous definitions of fuzzy-type Turing machines to obtain degrees of accepting and rejecting in a computational manner. We apply a BFS-based search method and some level’s upper bounds to propose a computational process in calculating degrees of accepting and rejecting. Next, we introduce the class of Extended Fuzzy Turing Machines equipped with indeterminacy s...

متن کامل

Non-Classical Hypercomputation

Hypercomputation that seeks to solve the Halting Problem, or to compute Turing-uncomputable numbers, might be called “classical” hypercomputation, as it moves beyond the classical Turing computational paradigm. There are further computational paradigms that we might seek to move beyond, forming the basis for a wider “non-classical” hypercomputation. This paper surveys those paradigms, and poses...

متن کامل

Can new physics challenge “old” computational barriers?

We discuss the impact of very recent developments of spacetime theory, black hole physics, and cosmology to well established foundational issues of computability theory and logic. Namely, we describe a physical device in relativistic spacetime which can compute a non-Turing computable task, e.g. which can decide the halting problem of Turing machines or whether ZF set theory is consistent or no...

متن کامل

Cdmtcs Research Report Series Recursively Enumerable Reals and Chaitin Numbers Recursively Enumerable Reals and Chaitin Numbers

A real is called recursively enumerable if it can be approximated by an increasing, recursive sequence of rationals. The halting probability of a universal selfdelimiting Turing machine (Chaitin's number, [10]) is a random r.e. real. Solovay's [25] -like reals are also random r.e. reals. Solovay showed that any Chaitin number is -like. In this paper we show that the converse implication is true...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.08699  شماره 

صفحات  -

تاریخ انتشار 2015